
HPC I/O for Computational Scientists:
I/O Transformations

Presented to
ATPESC 2017 Participants

Rob Latham and Phil Carns
Mathematics and Computer Science Division
Argonne National Laboratory

Q Center, St. Charles, IL (USA)
8/4/2017

ATPESC 2017, July 30 ± August 11, 20172

First some background:
How flat files are stored on many servers and disks

· Single file example: ckpoint43.h5

· File is split (under the covers) into
multiple blocks

· Those blocks are then striped across a
subset of servers

· Each server then stores it's block on a
collection of disks

· Most optimizations focus on making
better use of servers in parallel

I/O

Persistent data sets

Network

S0 S1 S2 S3

Servers

Disks

B
0

B
1

B
2

ATPESC 2017, July 30 ± August 11, 20173

Policy details for striping files

· Mira: happens automatically, and large
files will use every server

· Theta/Cori: by default, each file will be
stored on a single server
± You can tune this setting for large files that

will be accessed in parallel
± See Darshan hands-on scripts (later today)

for examples
± Example: ªlfs setstripe -c -1º on a directory

to widely stripe all new files in directory

I/O

Persistent data sets

Network

S0 S1 S2 S3

Servers

Disks

B
0

B
1

B
2

ATPESC 2017, July 30 ± August 11, 20174

Managing Concurrent Access

Files are treated like global shared memory regions . Locks are used
to manage concurrent access :
· Files are broken up into lock units

± Unit boundaries are dictated by the storage system, regardless of access pattern

· Clients obtain locks on units that they will access before I/O occurs

· Enables caching on clients as well (as long as client has a lock, it knows its cached
data is valid)

· Locks are reclaimed from clients when others desire access

If an access touches any data in
a lock unit, the lock for that
region must be obtained before
access occurs.

4

ATPESC 2017, July 30 ± August 11, 20175

Implications of Locking in Concurrent Access

5

ATPESC 2017, July 30 ± August 11, 20176

I/O Transformations

Software between the application and the file syste m performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process

Folder fo

File data.

File index

� Goals of transformations:
± Reduce number of operations to PFS

(avoiding latency)
± Avoid lock contention

(increasing level of concurrency)
± Hide number of clients

(more on this later)
� With ªtransparentº transformations,

data ends up in the same locations
in the file as it would have been
normally

± i.e., the file system is still aware of the
actual data organization

When we think about I/O
transformations, we consider the
mapping of data between application
processes and locations in file.

6

ATPESC 2017, July 30 ± August 11, 20177

I/O Transformations

Software between the application and the file syste m performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process

Folder fo

File data.

File index

� We will tour through a few examples
of data transformations in the
following slides

� The important thing to remember is
that software already exists to do
these things for you in HDF5,
PnetCDF, ADIOS, and MPI-IO

� If you find yourself replicating these
optimizations by hand, look around
to see if you can find an off-the-shelf
solution

When we think about I/O
transformations, we consider the
mapping of data between application
processes and locations in file.

7

ATPESC 2017, July 30 ± August 11, 20178

Reducing Number of Operations

Because most operations go over multiple networks, I/O to a PFS
incurs more latency than with a local FS. Data sieving is a technique
to address I/O latency by combining operations:
· When reading, application process reads a large region holding all

needed data and pulls out what is needed
· When writing, three steps required (below)
· Somewhat counter-intuitive: do extra I/O to avoid contention

Step 1: Data in region to be
modified are read into intermediate
buffer (1 read).

Step 2: Elements to be written to
file are replaced in intermediate
buffer.

Step 3: Entire region is written back
to storage with a single write
operation.

8

ATPESC 2017, July 30 ± August 11, 20179

Avoiding Lock Contention
We can reorder data among processes to avoid lock
contention. Two-phase I/O splits I/O into a data reorganization
phase and an interaction with the storage system (two-phase write
depicted):

· Data exchanged between processes to match file layout

· 0 th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes
based on organization of data in file.

Phase 2: Data are written to file (storage servers)
with large writes, no contention.

9

ATPESC 2017, July 30 ± August 11, 201710

Two-Phase I/O Algorithms
(or, You don't want to do this yourself¼)

For more information, see W.K. Liao and A. Choudhary, ªDynamically
Adapting File Domain Partitioning Methods for Collective
I/O Based on Underlying Parallel File System Locking Protocols,º
SC2008, November, 2008.

10

Today's systems also choose aggregators
that are ªclosestº to storage

ATPESC 2017, July 30 ± August 11, 201711

S3D Turbulent Combustion Code

· S3D is a turbulent combustion application using a
direct numerical simulation solver from Sandia
National Laboratory

· Checkpoints consist of four global arrays

± 2 3-dimensional

± 2 4-dimensional

± 50x50x50 fixed
subarrays

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and
Wei-Keng Liao (NWU) for providing the S3D I/O
benchmark, Wei-Keng Liao for providing this diagram,
C. Wang, H. Yu, and K.-L. Ma of UC Davis for image.

11

ATPESC 2017, July 30 ± August 11, 201712

Impact of Transformations on S3D I/O
· Testing with PnetCDF output to single file, three configurations, 16 processes

± All MPI-IO optimizations (collective buffering and data sieving) disabled

± Independent I/O optimization (data sieving) enabled

± Collective I/O optimization (collective buffering, a.k.a. two-phase I/O) enabled

Coll. Buffering and
Data Sieving Disabled

Data Sieving Enabled Coll. Buffering
Enabled (including
Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time per
proc (sec)

1426.47 4.82 0.60

12

Application did the same
thing in every case

ATPESC 2017, July 30 ± August 11, 201713

Transformations in the I/O Forwarding Step

Compute nodes I/O forwarding nodes (or I/O
gateways) shuffle data between
compute nodes and external
resources, including storage.

Storage nodes

External
network

Disk arrays

13

ATPESC 2017, July 30 ± August 11, 201714

Transformations in the I/O Forwarding Step

Another way of transforming data access by clients is by
introducing new hardware: I/O forwarding nodes .

· I/O forwarding nodes (e.g., on Mira) serve a number of functions:
± Bridge between internal and external networks
± Run PFS client software, allowing lighter-weight solutions internally
± Perform I/O operations on behalf of multiple clients
± Transparently transform data on its way to and from the file system

· On Theta, Lnet routers fill a similar role
± Bridge networks
± Shape and route I/O traffic for storage system

14

ATPESC 2017, July 30 ± August 11, 201715

Transformations in the I/O Forwarding Step

The transformations can take many forms:

· Performing one file open on behalf of many processes

· Combining small accesses into larger ones

· Caching data

· Redirecting requests through shorter network routes

15

ATPESC 2017, July 30 ± August 11, 201716

ªNot So Transparentº Transformations

Some transformations result in file(s) with differe nt data
organizations than the user requested.

· Observation: if processes are writing to different files, then
they will not have lock conflicts

· What if we convert writes to the same file into writes to different files?
± Need a way to group these files together
± Need a way to track what we put where
± Need a way to reconstruct on reads

· Or alternatively, data could be stored in a different type of storage
system entirely (not a file system)

16

ATPESC 2017, July 30 ± August 11, 201717

ªNot So Transparentº Transformations

Example: PnetCDF subfiling

· Translates a single data set into
multiple underlying files

Example: HDF5 vol plugins

· Abstraction layer that can map
an HDF5 data set to multiple
files or even to completely
different storage targets

17

ATPESC 2017, July 30 ± August 11, 201718

Why not just write a file per process?
File per process vs. shared file access as function of job size on

Intrepid Blue Gene/P system

18

Sometimes this is the fastest
strategy, but becomes
increasingly hard to sustain at
scale.

ATPESC 2017, July 30 ± August 11, 201719

I/O transformation summary

Historically, the storage data model has been the P OSIX file
model, and the PFS has been responsible for managin g it.

· Transparent transformations work within these limitations

· When data model libraries are used:
± Transforms can take advantage of more knowledge

· e.g., dimensions of multidimensional datasets

± Doesn't matter so much whether there is a single file underneath
± Or in what order the data is stored
± As long as portability is maintained

· Single stream of bytes in a file is inconvenient for parallel access
± Future designs might provide a different underlying model

19

ATPESC 2017, July 30 ± August 11, 201720

Takeaways

· Parallel file systems provide the underpinnings of HPC I/O solutions

· Data model libraries provide alternative data models for applications
± PnetCDF and HDF5 will both be discussed in detail later in the day

· Characteristics of PFSes lead to the need for transformations in order
to achieve high performance
± Implemented in a number of different software layers
± Some preserving file organization, others breaking it

· The down side: proliferation of layers complicates performance
debugging
± We'll address this topic later in the day

20

ATPESC 2017, July 30 ± August 11, 201721

Next up!

· This presentation provided an overview of transformations in the
HPC I/O stack

· The next presentation will walk through an example application case
study for a first-hand look at how to program for HPC I/O

